Speaker-independent phonetic classification using hidden Markov models with mixtures of trend functions

نویسندگان

  • Li Deng
  • Michael Aksmanovic
چکیده

In this study, we make a major extension of the nonstationary-state or trended hidden Markov model (HMM) from the previous single-trend formulation [2], [3] to the current mixture-trended one. This extension is motivated by the observation of wide variations in the trajectories of the acoustic data in fluent, speaker-independent speech associated with a fixed underlying linguistic unit. It is also motivated by potential use of mixtures of trend functions to characterize heterogeneous time-varying data generated from distinctive sources such as the speech signals collected from different microphones or from different telephone channels. We show how HMM’s with mixtures of trend functions can be implemented simply in the already well-established single-trend HMM framework via the device of expanding each state into a set of parallel states. Details of a maximum-likelihood-based (ML-based) algorithm are given for estimating state-dependent mixture trajectory parameters in the model. Experimental results on the task of classifying speaker-independent vowels excised from the TIMIT data base demonstrate consistent performance improvement using phonemic mixture-trended HMM’s over their single-trend counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal control and training selection for HMM-based system

Most speaker-independent acoustic-phonetic decoding systems are based on hidden Markov models. Such systems lack a real temporal control for the phonetic models. Furthermore, inter-speaker variability makes speaker adaptation necessary. In order to solve these problems, we introduce two original approaches. On the one hand, discontinuities detected with the ForwardBackward Divergence method are...

متن کامل

A maximum a posteriori approach to speaker adaptation using the trended hidden Markov model

A formulation of the maximum a posteriori (MAP) approach to speaker adaptation is presented with use of the trended or nonstationary-state hidden Markov model (HMM), where the Gaussian means in each HMM state are characterized by time-varying polynomial trend functions of the state sojourn time. Assuming uncorrelatedness among the polynomial coefficients in the trend functions, we have obtained...

متن کامل

User-customized Password Speaker Verif Gmm Model

In this paper, we present a new approach towards user-customized password speaker verification combining the advantages of hybrid HMM/ANN systems, usingArtificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models , and Gaussian Mixture Models. In the approach presented here, we indeed exploit the properties of hybrid HMM/ANN systems, usually resulting in high phon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1997